Towards sequential statistical testing as some standard: Pearson's correlation coefficient

Hin zu sequentiellem statistischem Testen als Standardverfahren: Pearsons Korrelationskoeffizient

Abstract

In standard statistical packages sequential tests are seldom and when they are offered, they mainly concern just tests about means. By a simulation study it was shown that a new sequential triangular test for the null-hypothesis H_0 : $0 < \rho \le \rho_0$ for given requirements of precision (type-l-, type-ll-risk, and a practical relevant effect $\delta = \rho_1 - \rho_0$) offers reasonable results. Due to 100,000 runs the average sample size of the sequential triangular test is smaller than the sample size of the pertinent fixed sample size test. If practically possible, it is recommended that the triangular test should be used instead of a one-step procedure with a sample size fixed in advance.

Keywords: sequential test, correlation coefficient, simulation

Zusammenfassung

In statistischen Programmpaketen findet man kaum sequentielle Tests und wenn doch, werden vor allem Erwartungswerte getestet. Mit Hilfe einer Simulationsstudie konnte gezeigt werden, dass ein neuer sequentieller Dreieckstest der Nullhypothese $H_0: 0 < \rho \le \rho_0$ bei gegebenen Genauigkeitsforderungen wie Risiko erster und zweiter Art und einem praktisch relevanten Effekt $\delta = \rho_1 - \rho_0$ zu vernünftigen Ergebnissen führt. Bei 100.000 simulierten Tests war der durchschnittliche Stichprobenufang des sequentiellen Dreieckstests kleiner als der entsprechende fest vorgegebene Umfang. Wenn es praktisch machbar ist, sollte stets der Dreieckstest an Stelle eines Tests mit fest vorgegebenem Umfang verwendet werden.

Schlüsselwörter: sequentieller Test, Korrelationskoeffizient, Simulation

Introduction

In standard statistical packages sequential tests are seldom and when they are offered, they mainly concern just tests about means. For instance in [1], R-programs of sequential triangular tests can be found for:

- comparing a mean with a constant,
- · comparing two means,
- · comparing a probability with a constant,
- comparing two probabilities.

In this paper we present simulation results for a newly developed triangular sequential test for comparing a correlation coefficient with a constant.

In correlation analyses most of the time the null-hypotheses H_0 : $\rho=0$ (versus the two-sided alternative hypothesis H_A : $\rho\neq 0$) is tested. But a significant correlation coefficient – regardless of how small the type-l-risk α may be established and the more regardless how small the *p*-value results – has often no practical meaning. Therefore it is often more reasonable to test the null-hypothesis $H_0: \rho = \rho_0$ for any $0 < \rho_0 < 1$ against the alternative $H_A: \rho = \rho_1$ for any $\rho_1 > \rho_0$ or $\rho_1 < \rho_0$. Kubinger et al. [2] made available even to SPSS-users the fixed sample size test, which is known for this problem since a long time in statistics. In the present paper we show the attractiveness of a corresponding sequential triangular test proposed by Schneider et al. [3]. In general, sequential triangular tests have the advantage that their average sample size is not only smaller than that of the corresponding fixed sample size tests but its maximum sample size needed is known in advance in any case.

Dieter Rasch¹ Takuya Yanagida² Klaus D. Kubinger³ Berthold Schneider⁴

- 1 Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- 2 School of Applied Health and Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
- 3 Division of Psychological Assessment and Applied Psychometrics, Faculty of Psychology, University of Vienna, Vienna, Austria
- 4 Institute for Biometry, Hannover Medical School, Hannover, Germany

Method

The null-hypothesis $H_0: \rho = \rho_0$ can – without loss of generality – be replaced by $H_0: 0 < \rho \le \rho_0$ or by $H_0: \rho \ge \rho_0$. In an analogous way the alternative hypothesis may be replaced by a composite alternative.

Under the assumption that random variables are normally distributed with second moments σ_x^2 , σ_y^2 , and σ_{xy} , and a correlation coefficient $\rho = \sigma_{xy} / (\sigma_x \sigma_y)$ the null-hypothesis should be tested against the alternative hypothesis H_A : $0 < \rho_0 \le \rho \le \rho_1$ with a type-l-risk α – i.e. the probability of wrongly rejecting H_0 – and a type-ll-risk β – i.e. the probability of wrongly accepting H_0 (in particular as long as $\delta \ge \rho_1 - \rho_0$ with a ρ_1 to be fixed in advance).

The empirical correlation coefficient $r=s_{xy}/s_xs_y$ based on k observations (x_i,y_i) (i=1,...,k) is an estimate of the parameter ρ (s_{xy} , s_x^2 , s_y^2 are the empirical covariance and variances, respectively). In place of using r as a test statistic we use the transformed (Fisher transformation [4]) value

$$z = \ln\!\left(\frac{1+r}{1-r}\right)$$

as a test statistic. The distribution of the corresponding random variable is approximately normal even if k is rather small. The expectation of z, being a function of ρ , amounts to

$$E(\mathbf{z}) = \ln\left(\frac{1+\rho}{1-\rho}\right) + \frac{\rho}{n-1} ,$$

the variance to

$$\operatorname{var}(z) = \frac{4}{n-3} \; .$$

The statistic *z* can be used to test for a fixed sample size k=n the hypothesis $H_0: \rho \le \rho_0$ against the alternative hypothesis $H_A: \rho > \rho_0$ (respectively $H_0: \rho \ge \rho_0$ against $H_1: \rho < \rho_0$, a problem discussed in [5], Example 11.15). $H_0: \rho \le \rho_0$ is rejected with error probability α , if

$$z \ge \ln\left(\frac{1+\rho}{1-\rho}\right) + \frac{\rho}{n-1} + z_{1-\alpha} \cdot \frac{2}{\sqrt{n-3}}$$

(respectively for $H_0: \rho \ge \rho_0$, if

$$z \ge \ln\left(\frac{1+\rho}{1-\rho}\right) + \frac{\rho}{n-1} - z_{1-\alpha} \cdot \frac{2}{\sqrt{n-3}} ;$$

 $z_{1-\alpha}$ a is the (1- α)-quantile of the standard normal distribution).

An approximate lower bound for the sample size *n* which is necessary to keep a type-II-error with probability smaller or equal β given $\rho = \rho_1$ is the smallest positive integer for which holds:

$$n \ge 3 + 4 \cdot \left(\frac{z_{1-\alpha} + z_{1-\beta}}{\ln(\frac{1+\rho_1}{1-\rho_1}) - \ln(\frac{1+\rho_0}{1-\rho_0})}\right)^2$$

A special group of sequential tests are the sequential triangular tests, going back to Whitehead [6] and Schneider [7]. The main characteristic is that based on the actual sampled date, to decide whether sampling has

to be continued or either the null- or the alternative hypothesis can be accepted.

We split the sequence of data pairs into sub-samples of length, say k>3 each. For each sub-sample j (j=1, 2,..., m) we calculate a statistic which distribution is only a function of ρ and k.

A triangular test must be based on a statistic with expectation 0, given the null-hypothesis, therefore we transform z into a realization of a standardized variable

$$z^* = \left[z - \ln\left(\frac{1+\rho_0}{1-\rho_0}\right) - \frac{\rho_0}{k-1}\right] \frac{\sqrt{k-3}}{2}$$
(1)

which has the expectation 0 if the null-hypothesis is true. The parameter

$$\theta = \left[\ln \frac{1+\rho}{1-\rho} - \ln \frac{1+\rho_0}{1-\rho_0} + \frac{\rho-\rho_0}{k-1} \right] \frac{\sqrt{k-3}}{2}$$
(2)

is used as a test-parameter. For $\rho = \rho_0$ the parameter θ is 0 (as demanded). For $\rho = \rho_1$ we obtain:

$$\theta_{1} = \left[\ln \frac{1+\rho_{1}}{1-\rho_{1}} - \ln \frac{1+\rho_{0}}{1-\rho_{0}} + \frac{\rho_{1}-\rho_{0}}{k-1} \right] \frac{\sqrt{k-3}}{2}$$
(3)

The difference $\delta = \rho_1 - \rho_0$ is the practical relevant difference which should be detected with the power $1 - \beta$.

From each sub-sample j we now calculate the sample correlation coefficient r_i as well as its transformed values

$$z_{j}^{*} = \left[z_{j} - \ln\left(\frac{1+\rho_{0}}{1-\rho_{0}}\right) - \frac{\rho_{0}}{k-1} \right] \frac{\sqrt{k-3}}{2} \quad (j=1, 2, ..., m).$$

Now by

 $Z_{m\theta=0} = \sum_{j=1}^{m} z *_{j}$

and $V_m = m$ the sequential path is defined by points (V_m, Z_m) for m=1,2,... up to the maximum of V below or exactly at the point where a decision can be made. The continuation region is a triangle whose three sides depend on α , β , and θ_1 via

$$a = \frac{\left(1 + \frac{z_{1-\beta}}{z_{1-\alpha}}\right) \ln\left(\frac{1}{2\alpha}\right)}{\theta_1} \text{ and } c = \frac{\theta_1}{2\left(1 + \frac{z_{1-\beta}}{z_{1-\alpha}}\right)} (4),$$

with the percentiles z_p of the standard normal distribution. That is, one side of the looked-for triangle lies between -a and a on the ordinate of the (V, Z) plane (V=0). The two other borderlines are defined by the lines L_1 : Z=a+cV and L_2 : Z=-a+3cV, which intersect at

$$\left(V_{\max} = \frac{a}{c}, Z_{\max} = 2a\right)$$
(5)

The maximum sample size is of course kV_{max} . The decision rule now is: Continue sampling as long as $-a+3cV_m < Z_m < a+cV_m$ if $\theta_1 > 0$ or $-a+3cV_m > Z_m > a+cV_m$ if $\theta_1 < 0$. Given $\theta_1 > 0$, accept H_A in case that Z_m reaches or exceeds L_1 and accept H_0 in case that Z_m reaches or underruns L_2 , Given $\theta_1 < 0$, accept H_A in the case Z_m reaches or underruns L_1 and accept H_0 in the case Z_m reaches or exceeds L_2 . If

the point $(V_{\text{max}} = \frac{a}{c}, Z_{\text{max}} = 2a)$ is reached, H_{A} is to be accepted.

Example 1

We like to test the null hypothesis $\rho \leq .6$ against the alternative hypothesis ρ >.6 with α =.05, β =.1 and δ = ρ_1 -.6 =.2. We use k=7. We hence obtain

$$\ln\left(\frac{1+0.6}{1-0.6}\right) + \frac{0.6}{6} = 1.486$$

and
$$\ln\left(\frac{1+0.8}{1-0.8}\right) + \frac{0.8}{6} = 2.331$$
.
Since $\sqrt{k-3} = 2$ we obtain
 $\theta_1 = \frac{2}{2}(2.331 - 1.486) = 0.845$.
We find $z_{.0.9} = 1.282$ and $z_{.0.95} = 1.645$, and hence
$$\left(1 + \frac{1.282}{1.645}\right) \ln\left(\frac{1}{0.1}\right)$$

$$a = \frac{\left(\frac{1+\frac{1}{1.645}}{1.645}\right)^{111}\left(\frac{1}{0.1}\right)}{0.845} = 4.849$$
$$c = \frac{0.845}{2\left(1+\frac{1.282}{1.645}\right)} = 0.168$$
.

From (5) we get V_{max} =4.849/0.168=28.863, Z_{max} =9.698. The corresponding triangle is shown in Figure 1.

Figure 1: Graph of the triangle of example 1

Example 2

Finally we demonstrate the case of Example 11.15 in [5]. We like to test the null hypothesis $\rho \ge .8$ against the alternative hypothesis ρ <.6 with α =.05, β =.1 and δ =.8-.6=.2. We use k=7. We hence obtain

$$\ln\left(\frac{1+0.8}{1-0.8}\right) + \frac{0.8}{6} = 2.331$$

and
$$\ln\left(\frac{1+0.6}{1-0.6}\right) + \frac{0.6}{6} = 1.486$$
.
Since $\sqrt{k-3} = 2$ we obtain
 $\theta_1 = \frac{2}{2}(1.486 - 2.331) = -0.845$.
We find $z_{.0.9} = 1.282$ and $z_{.0.95} = 1.645$, and hence
$$a = \frac{\left(1 + \frac{1.282}{1.645}\right) \ln\left(\frac{1}{0.1}\right)}{-0.845} = -4.849$$

 $c = \frac{-0.845}{2\left(1 + \frac{1.282}{1.645}\right)} = -0.168$.

V_{max}=-4.849/-0.168=28.863, (5) From we get $Z_{\rm max}$ =-9.698.

The corresponding triangle is shown in Figure 2.

Figure 2: Graph of the triangle of example 2

Simulation study

The reasonability of the sequential triangular test for hypotheses of the correlation coefficient was tested by simulated paths (Z, V) being generated by bivariate normally distributed random numbers x and y with means $\mu_x = \mu_v = 0$, variances $\sigma_x^2 = \sigma_v^2 = 1$, and a correlation coefficient σ_{xy} = ρ . Simulations were performed with the nominal risks α_{nom} =.05, β_{nom} =.2 and several values of ρ_0 , ρ_1 and k. For each parameter combination 100,000 paths were generated. Simulations as well as the calculation of the introduced sequential triangular test were done in R [8]. As criteria for the test-quality we calculated: the relative frequency of wrongly accepting H_1 , given $\rho = \rho_0$, which is the empirical risk of the first kind, say α_{emp} ; the relative frequency of rejecting H_1 , given $\rho = \rho_1$ – this is empirical

Table 1: Simulation results for $\alpha \text{=}.05$ and $\beta \text{=}.2$ and 100,000 runs for each empty

	$\rho_0=.5, \rho_1=.6$							
	k	12	16	20	50			
	α_{emp}	.0962	.0737	.0644	.0369			
ſ	eta_{emp}	.0815	.1052	.123	.1471			
	ASN(ρ₀)	249.0228	230.0896	224.274	221.09			
	ASN(ρ1)	243.5088	244.2192	243.954	259.355			
	<i>n</i> _{fix}	302	302	302	302			

$ ho_0$ =.5, $ ho_1$ =.65							
k	12	16 20		50			
α _{emp}	.0706	.054 .0464		.0336			
β _{emp}	.0943	.1226	.1281	.1405			
<i>ASN</i> (ρ ₀)	104.2416	98.7344	96.778	104.62			
ASN ρ ₁)	111.6108	110.4512	111.126	125.71			
n _{fix}	125	125	125	125			

ρ ₀ =.5, ρ ₁ =.7						
k	12	16	20	50		
α _{emp}	.0531	.042	.0413	.027		
β _{emp}	.1135	.1304	.1329	.1378		
<i>ASN</i> (ρ ₀)	55.6608	54.4528	54.29	64.275		
ASN ρ ₁)	62.0748	62.3424	63.024	75.405		
n _{fix}	65	65	65	65		

$ ho_0$ =.6, $ ho_1$ =.7						
k	12	16	20	50		
α _{emp}	.0937	.0747	.0643	.0373		
β _{emp}	.0781	.1018	.1153	.1408		
<i>ASN</i> (ρ ₀)	176.712	163.9968	159.78	159.675		
ASN ρ ₁)	173.8512	172.2336	173.034	188.94		
n _{fix}	207	207	207	207		

ρ_0 =.6, ρ_1 =.75						
k	12	16	20	50		
α _{emp}	.0632	.0517	.0454	.0249		
eta_{emp}	.1023	.1195 .1256		.1348		
<i>ASN</i> (ρ ₀)	71.3652	67.8848	67.58	76.035		
ASN ρ ₁)	77.034	76.1136	77.952	90.855		
n _{fix}	82	82	82	82		

	~	~
$\rho_0 = .6$	j.ρ	1=.8

k	8	12	16	20	50
α_{emp}	.0667	.048	.038	.033	.0207
$oldsymbol{eta}_{ ext{emp}}$.0803	.0885	.1164	.1234	.1034
<i>ASN</i> (ρ ₀)	41.3096	37.0776	36.9648	37.364	52.455
<i>ASN</i> (ρ ₁)	43.2424	41.5812	42.7376	43.986	57.88
n _{fix}	41	41	41	41	41

risk of the second kind, say β_{emp} ; the average number of samples ASN for ρ_0 and ρ_1 used for the calculation of r and z^* until data sampling stopped (that is: the path leaves the continuation region). Here, ASN is the mean number of sample pairs over all 100,000 runs of the simulation study. Bear in mind that in a certain case the

.064 .057 .0324 α_{emp} .1015 .1117 .1367 β_{emp} $ASN(\rho_0)$ 98.1936 96.104 102.67 ASN(p1) 104.9072 105.5 120.785 119 119 119 *n*_{fix} ρ_0 =.7, ρ_1 =.85 12 50 k 16 20 .0495 .0406 .0348 .0233 α_{emp} β_{emp} .0976 .1141 .1267 .1021 40.4028 40.1568 40.37 53.985 $ASN(p_0)$ $ASN(p_1)$ 44.5476 45.4208 60.495 46.676 *n*_{fix} 44 44 44 44 $\rho_0 = .7, \rho_1 = .9.$ 8 16 20 k 12 .0466 .038 .0288 .0282 α_{emp} eta_{emp} .1028 .106 .0861 .0943 20.7248 ASN(ρ₀) 21.2232 20.1612 22.54 $ASN(p_1)$ 23.072 22.8144 23.7568 25.718 20 20 20 20 *n*_{fix} $\rho_0 = .8, \rho_1 = .9$ 12 20 50 k 16 .0592 .0466 .0433 .0233 α_{emp} .0943 .1097 .0975 β_{emp} .1198 43.2608 *ASN*(ρ₀) 44.7372 42.996 55.49 48.352 ASN(ρ₁) 47.8344 49.404 62.72 48 48 48 48 *n*_{fix} ρ_0 =.8, ρ_1 =.95. 8 12 16 20 k .0461 .0306 .0263 .0241 α_{emp} .0799 .1078 .1008 .0825 β_{emp} 15.8192 15.414 17.312 20.354 *ASN*(ρ₀) $ASN(p_1)$ 17.4848 17.5512 19.1984 21.11 15 15 15 15 $n_{\rm fix}$

 ρ_0 =.7, ρ_1 =.8

20

50

16

k

number of sample pairs needed for a terminal decision may lie either below or above that value ASN. The procedure is reasonable, if $\alpha_{emp} \leq \alpha$ and $\beta_{emp} \leq \beta$. Of course, the sequential test should also lead to $ASN < n_{fix}$, where n_{fix} is the sample size necessary in a fixed sample size test with a power $1-\beta$, given $\rho = \rho_1$ and testing the hypothesis $\rho \leq \rho_0$

with the type-I-risk α =.05. Results are shown in Table 1 where the difference between α_{emp} and α are not to large. The ASN strongly depends on the real value of ρ . From Table 1 the reader finds reasonable values of *k* for the pairs (ρ_0 , ρ_1) to be tested.

To summarize: If one actually wishes to check whether a correlation coefficient is large enough we suggest first to fix a lower bound of the coefficient of determination ρ_0^2 as the value which at least must be given in order to speak of a meaningful percentage of the variance of *y* which can be explained by x - and vice versa. Another value of the coefficient of determination, ρ_1^2 , is that one which the researcher must not oversee with a higher probability than $1-\beta$ if given. It is easy to adapt the procedure for negative roots of these squares. For example, one might decide for $\rho_0^2=.5$, as a consequence of which $\rho_0=.7$; suppose $\rho_1=.8$, $\alpha=.05$, $\beta=.2$, then using k=26 (by interpolation) a total sample size will result as about 108 instead of 119 for a fixed sample study.

Note

Conflict of interest

The authors declare that they have no competing interests.

References

- Rasch D, Pilz J, Verdooren RL, Gebhardt A. Optimal experimental design with R. New York: Chapman & Hall/CRC; 2011.
- Kubinger KD, Rasch D, Šimeckova M. Testing a correlation coefficient's significance: Using H0: 0<ρ≤λ is preferable to H0: p=0. Psychol Sci. 2007;49:74-87.
- Schneider B, Rasch D, Kubinger KD, Yanagida T. A Sequential Triangular Test of a Correlation Coefficient's Null-Hypothesis: 0<p≤p0. Stat Pap. 2014 Jun 12. DOI: 10.1007/s00362-014-0604-8

- 4. Fisher RA. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika. 1915;10(4):507-21.
- Rasch D, Kubinger KD, Yanagida T. Statistics in Psychology. Using R and SPSS. Chichester: Wiley; 2011. DOI: 10.1002/9781119979630
- 6. Whitehead J. The Design and Analysis of Sequential Clinical Trials. 2nd ed. Chichester: Ellis Horwood; 1992.
- Schneider B. An interactive computer program for design and monitoring of sequential clinical trials. In: Proceedings of the XVIth international biometric conference; 1992 Dec 7-11; Hamilton, New Zealand. p. 237-50.
- R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. Available from: http://www.R-project.org/

Corresponding author:

Dieter Rasch

Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Wien, Austria d_rasch@t-online.de

Please cite as

Rasch D, Yanagida T, Kubinger KD, Schneider B. Towards sequential statistical testing as some standard: Pearson's correlation coefficient. GMS Med Inform Biom Epidemiol. 2014;10(1):Doc07. D0I: 10.3205/mibe000156, URN: urn:nbn:de:0183-mibe0001569

This article is freely available from

http://www.egms.de/en/journals/mibe/2014-10/mibe000156.shtml

Published: 2014-10-28

Copyright

©2014 Rasch et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.

