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Abstract
This review explore the rise of multidrug-resistant (MDR) Gram-negative
bacteria, highlighting β-lactamase inhibitor combinations as crucial

Kazi-Chishti Marzooka1

Shaikh Sajed1

therapeutic options. It examines β-lactam resistance mechanisms, es-
Mohamed Hassan
Dehghan1
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dime/avibactam (CAZ-AVI) for carbapenem-resistantKlebsiella pneumo- Kazi Bilal2
niae (CRKP) and ceftolozane/tazobactam (TOL-TAZ) for MDR Pseudo-
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Die Übersicht befasst sich mit der Zunahme multiresistenter (MDR)
Gram-negativer Bakterien, wobei β-Lactamase-Inhibitor-Kombinationen
als wichtige therapeutische Optionen hervorgehoben werden.
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binationen (z.B. Ticarcillin/Clavulansäure, Piperacillin/Tazobactam) und
die klinischeWirksamkeit neuerer Therapien wie Ceftazidim/Avibactam
(CAZ-AVI) gegen Carbapenem-resistente Klebsiella pneumoniae (CRKP)
und Ceftolozan/Tazobactam (TOL-TAZ) gegenMDR-Pseudomonas aeru-
ginosa. Darüber hinaus werden neuartige Kombinationen (z.B. Cefepim-
Enmetazobactam, Cefepim-Taniborbactam) zur Bekämpfung extensiv
arzneimittelresistenter (XDR) Bakterien diskutiert.
Durch vergleichende Analysen liefert die Übersicht wichtige Erkenntnisse
über Wirksamkeit, Resistenz, Pharmakokinetik und Sicherheit, die bei
der Optimierung antimikrobieller Strategien und Klinikern bei der Be-
handlung von MDR-Infektionen helfen und gleichzeitig das Antibiotika-
management und die zukünftige Forschung unterstützen.
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Introduction
β-Lactams are the most widely used antibiotics globally,
and include various penicillin derivatives and related
classes such as cephalosporins, cephamycins, carbapen-
ems, monobactams, and penems [1], [2]. Despite their
effectiveness, bacteria have developed resistancemech-
anisms, including the production of β-lactamase enzymes
that break down the antibiotic structure. β-Lactamases
are classified into four categories: A, B, C, and D, based
on their structure and hydrolytic mechanisms. Class B
enzymes, called metallo-β-lactamases (MBLs), require
zinc ions for activity, while classes A, C, and D use serine
[2], [3]. The overuse of β-lactams has contributed to the
growing resistance to extended-spectrum cephalosporins
and carbapenems, posing a serious global health threat.
Particularly concerning are carbapenem-resistant bac-
teria, such as those encoding Klebsiella (K.) pneumoniae
carbapenemase (KPC), New Delhi metallo-β-lactamase
(NDM), and oxacillinase (OXA-48), due to their ability to
resist multiple antibiotics. These growing resistances
underscore the urgent need for effective antimicrobial
strategies to address resistant bacterial infections and
protect public health. A promising approach is the devel-
opment of broad-spectrum β-lactamase inhibitors, de-
signed to counteract β-lactam resistance by blocking the
enzymes responsible for breaking down antibiotics like
cephalosporins and carbapenems. These inhibitors target
common pathogens treated with β-lactams, including
Escherichia (E.) coli, K. pneumoniae, and Pseudomonas
(P.) aeruginosa [1], [2], [3]. Resistance to β-lactams arises
through various mechanisms, such as changes in mem-
brane permeability, enzyme inactivation, and efflux
pumps. Horizontal gene transfer, especially among car-
bapenemases-producing bacteria, plays a major role in
spreading resistance [4], [5].This work aims to provide a
detailed review of current β-lactamase inhibitors and their
combinations, as well as explore newly developed or ex-
perimental compounds.

Mechanism of action of β-lactam
antibiotics and antibiotic resistance
β-Lactam antibiotics disrupt bacterial cell wall synthesis
by mimicking the D-alanine-D-alanine structure in pep-
tidoglycans, thereby inhibiting isopeptide bond formation
by bacterial transpeptidases [6]. This interference reduces
bacterial growth and division, while also weakening their
defense against osmotic or tensile stress [7]. Penems,
like faropenem, target L,D-transpeptidases, unlike car-
bapenems that focus on D,D-transpeptidases, making
penems uniquely effective against mycobacteria [8], [9].
Penicillin-binding proteins (PBPs), essential for peptide
cross-linking, are key targets of β-lactam antibiotics. PBPs
are classified bymolecular mass into various classes and
subclasses [10], [11], [12], [13]. In Gram-negative bac-
teria, high-molecular-weight PBPs such as 1a, 1b, PBP2,

and PBP3 play critical roles, and their inhibition can lead
to cell death [14], [15].
For decades, β-lactam antibiotics have revolutionized the
treatment of bacterial infections. However, their effective-
ness is increasingly compromised by the rise and spread
of resistance mechanisms, especially in Gram-negative
bacteria. These mechanisms (Figure 1) include the pro-
duction of β-lactamase enzymes, such as extended-spec-
trum β-lactamases (ESBLs), which inactivate β-lactams
and severely limit treatment options [16], [17]. Addition-
ally, mutations in penicillin-binding proteins (PBPs) reduce
β-lactams’ binding affinity, diminishing their effectiveness,
making it crucial to identify specific PBP mutations for
optimized treatment [18], [19]. Efflux pumps,membrane
proteins that expel β-lactams from bacterial cells, also
play a role in reducing drug efficacy and fostering resis-
tance [20]. Furthermore, changes in the bacterial outer
membrane, including altered porins andmodifications to
the lipopolysaccharide (LPS) layer, prevent β-lactams
from entering the cell, lowering of periplasmic accumula-
tion and therapeutic effectiveness [21], [22].

β-Lactamase classification systems
The two primary classification systems for β-lactamases
are the Ambler molecular classification and the
Bush–Jacoby–Medeiros functional classification. These
systems provide complementary information for under-
standing the enzymes that can inactivate β-lactam antibi-
otics [23], [24], [25].These classification are described
in Table 1.

β-Lactamase diversity in
Gram-negative bacteria
The increasing diversity of β-lactamase genes in Gram-
negative bacteria demandsthe continuous monitoring
and development of new strategies to combat antibiotic
resistance. Understanding these enzymes and their im-
pact is key to preserving β-lactam effectiveness. Table 2
provides an overview of β-lactamase diversity in Gram-
negative bacteria and strategies for combating antibiotic
resistance for clinically relevant β-lactamase types and
their activity spectrum.

β-Lactam/β-lactamase inhibitor
combinations in combating
bacterial resistance
The following combinations are described: Ceftazidime-
avibactam, ceftalozone-tazobactam, cefepime-zidebac-
tam, cefepime-enmetazobactam and cefepime-tanibor-
bactam.
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Figure 1: Resistance mechanism of the β-lactam antibiotic (created with BioRender.com)

1. Ceftazidime–avibactam(CAZ-AVI)

Themisuse of antibiotics is fuelling a global health crisis,
particularly concerning antimicrobial resistance (AMR),
especially with CRKP [26], [27]. Carbapenems, once the
last resort, are losing effectiveness against CRKP, leaving
limited treatment options [26], [27]. This issue is espe-
cially alarming in countries such as China [28]. Urgent
action is needed for new drugs to combat CRKP, as cur-
rent strategies such as double-carbapenem therapy have
limitations [29], [30]. Fortunately, a new generation of
antibiotics, including plazomicin, eravacycline, meropen-
em-vaborbactam, and CAZ-AVI, is promising [31], [32].
The FDA approval of CAZ-AVI in February 2015 marked
a milestone in the battle against challenging bacterial
infections. This novel medication, combining a beta-
lactamase inhibitor with a cephalosporin, offers a prom-
ising treatment option for complicated urinary tract and
intra-abdominal infections. Its formulation addresses
resistance mechanisms, offering new hope for effective
treatment where traditional antibiotics have faltered.
These medications, such as AVYCAZ® (Allergan) and
ZAVICEFTA® (Pfizer) [33], have since become therapeutic
options in the United States and are authorized for a
range of serious infections caused by specific susceptible
Gram-negativemicroorganisms in adults aged ≥18 years.
Since its introduction on the Chinese market in Septem-
ber 2019, CAZ-AVI has garnered considerable attention
for its proven clinical efficacy against carbapenem-resis-
tant CRKPinfections. By inhibiting enzymes such asAmpC-

producing beta-lactamase, ESBL, KPC, and OXA-48 car-
bapenemase, CAZ-AVI has emerged as a crucial weapon
in China’s fight against CRKP, demonstrating its value as
a vital addition to the global antimicrobial arsenal [34],
[35].

Mode of action

Third-generation cephalosporins such as ceftazidime
function similarly to other beta-lactam antibiotics. It works
by attaching itself to PBPs and preventing bacterial cell
wall peptidoglycan synthesis from occurring. Because of
this disruption, proper cross-linking during the formation
of the cell wall is prevented, which ultimately causes
bacterial cell lysis and death [36], [37]. One of the first
non-beta-lactam beta-lactamase inhibitors is avibactam.
Despite having no inherent antibacterial activity, ceftazi-
dime-avibactam plays a vital role in preventing ceftazi-
dime from being broken down by different serine beta-
lactamases [38], [39], [40]. Avibactam protects against
ceftazidime via a gradual, reversible process of covalent
acylation of beta-lactamase targets, which ultimately re-
leases intact avibactam without hydrolysis. With the ex-
ception ofits activity against class B enzymes (MBL), its
range of action includes Ambler class A (TEM-1, CTX-M-
15, KPC-2, KPC-3), class C (AmpC), and certain class D
beta-lactamases (OXA-48) [41], [42], [43].
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Table 1: Classification of β-lactamases

Bacterial susceptibility and resistance profile

Different beta-lactamases, including class A ESBLs, class
B carbapenemases, and class C cephalosporinases, can
hydrolyse CAZ. Inhibiting class A, class C, and some class
D beta-lactamases, such as CAZ and AVI, provides broad
protection against Gram-negative bacteria. However, its
effectiveness against Gram-positive bacteria, Gram-neg-
ative anaerobes, and isolates that produce class B beta-
lactamases is limited [44], [45]. Clinical data show that
CAZ-AVI is effective against isolates of enterobacterales
that produce AmpC and ESBLs, among other beta-
lactamase-producing bacteria. However, it has limited or
no activity against OXA-24, OXA-40, and OXA-69 in
Acinetobacter (A.) baumannii, and limited activity against
OXA-48 in K. pneumoniae, which are specific class D
carbapenemases. Global surveillance INFORM (Interna-
tional Network for Optimal ResistanceMonitoring) studies
revealed high susceptibility rates (99.5% to 100%) of
enterobacteriaceae to CAZ-AVI, including isolates of K.

pneumoniae, Proteus (P.) mirabilis, E. coli, and K. oxytoca
that produce AmpC and ESBL [46].
Recent studies indicate that the combination of CAZ-AVI
and aztreonam effectively combats resistant enterobac-
terisolates carrying the blaNDM-1 and blaKPC-4 genes.
Avibactam’s resistance to various enzyme classes pre-
vents NDM from hydrolyzing aztreonam, enhancing their
synergistic effect. Additionally, this combination has
successfully treated persistent bacteremia caused by
Stenotrophomonas maltophilia with L1 (MBL) and L2
(cephalosporinase) beta-lactamases [47].While CAZ-AVI
has been an effective option, the newly approved
EMBLAVEO® (aztreonam-avibactam) offers significant
advantages. Unlike previous combinations, EMBLAVEO
restores aztreonam’s activity against bacteria that co-
produce MBLs and other β-lactamases more effectively,
making it a superior choice for multidrug-resistant Gram-
negative infections. The resistance profile of CAZ-AVI is
outlined in Table 3. With this new formulation, clinicians
can expect improved treatment outcomes and broader
efficacy in tackling resistant infections.
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Table 2: Clinically relevant β-lactamase types and their activity spectrum

Pharmacokinetic-pharmacodynamic (PK-PD)
profile

CAZ and AVI exhibit comparable pharmacokinetic charac-
teristics, such as short plasma half-lives, minimal binding
to plasma proteins, and equivalent distribution within the
epithelial lining fluid (ELF) [48], [49]. For both medica-
tions, the main route of elimination is renal excretion, as
described in Table 4, while the key PK-PD profile is listed
in Table 5.
The efficacy of CAZ-AVI in diverse patient populations and
bacterial species is detailed in Table 6.

Safety profile and adverse events associated
with CAZ-AVI usage

Compared with randomized controlled trials (RCTs), CAZ-
AVI did not significantly differ in overall adverse event
rates. However, CAZ-AVI was associated with a higher
frequency of specific adverse events, including gastroin-
testinal issues (more than 20% of patients) and mild
creatinine level elevations (≤2%). Additionally, 3% to 6%

of patients experienced neurological adverse events,
pyrexia, peripheral edema, hypersensitivity reactions, and
other adverse events. Higher rates of serious adverse
events (SAEs) were reported with CAZ-AVI, although de-
tailed descriptions were lacking in the trials [50]. Nonran-
domized studies have indicated that up to 5% of patients
receiving CAZ-AVI experience acute kidney injury (AKI).
Neurological and gastrointestinal side effects are also
common, along with infrequent instances of leukopenia,
rash, and abnormal liver function. However, these studies
lacked thorough reporting of adverse events

2. Ceftalozone–tazobactam (TOL-TAZ)

The FDA and EuropeanMedicines Agency have approved
TOL-TAZ, a novel combination of a β-lactamase inhibitor
and a fifth-generation cephalosporin, for the treatment
of several difficult adult infections. Officially approved for
the treatment of complicated intra-abdominal infections,
complicated urinary tract infections, pyelonephritis, and
HABP, it has also demonstrated efficacy in the manage-
ment of acute pulmonary cystic fibrosis exacerbations in
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Table 3: Resistance profile of ceftazidime-avibactam

Table 4: Pharmacokinetic characteristics of ceftazidime-avibactam [48], [49]

adults; however, formal approval for this particular use
has not been granted [51], [52].

Mode of action

Ceftolozane, amember of the cephalosporin class, shares
structural similarities with ceftazidime. However, it differs
in having amodified pyrazole side chain at the 3-position,
which enhances its effectiveness against P. aeruginosa.
Its mode of action involves targeting PBPs to inhibit bac-
terial cell-wall synthesis. Compared with ceftazidime,
ceftolozane has a greater affinity for P. aeruginosa PBPs
1b, 1c, and 3 and shows greater stability against AmpC
β-lactamase-mediated resistance, which is commonly
observed in P. aeruginosa strains. Tazobactam, the
β-lactamase inhibitor in this combination, irreversibly in-

hibits most class A and some class C β-lactamases. This
extends the spectrum of ceftolozane activity to include
most ESBL-producing Gram-negative bacteria and pro-
vides some activity against anaerobic organisms. The
fixed-dose combination of ceftolozane and tazobactam
is available at a 2:1 ratio, which has been determined to
be themost potent combination through studies compar-
ing various ratios (2:1, 4:1, and 8:1) [53].

Bacterial susceptibility and resistance profile

The antipseudomonal combination of TOL-TAZ is effective
against a broad range of common Gram-negative patho-
gens. It has shown efficacy against various Streptococcus
species, multidrug-resistant P. aeruginosa, ESBL-produ-
cing enterobacterales such as E. coli with CTX-M-14 and
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Table 5: Ceftazidime-avibactam: Key aspects of PK-PD

CTX-M-15, and some anaerobes such as Bacteroides
fragilis and other non-Bacteroides Gram-negative bacteria
[54], [55]. Ceftolozane is primarily responsible for the
antibacterial effect against P. aeruginosa, with tazobac-
tam contributing minimally. Tazobactam’s main function
is to enhance ceftolozane’s activity against Enterobacteri-
aceae, although the combination shows relatively weak
efficacy against E. cloacae. Bacterial susceptibility and
resistance profiles are detailed in Table 7 and Table 8.

Pharmacokinetic-therapy and
pharmacodynamic profile

The volume of distribution at the steady state (Vss) for
TOL is 13.5 liters, whereas TAZ has a Vss of 18.2 liters.
TOL has a longer half-life (3.12 hours) than TAZ
(1.03 hours). TOL is 16–21% protein bound, and TAZ is
30% protein bound. TOL has an AUCELF/fAUC plasma
ratio of 0.50, whereas TAZ has a ratio of 0.62. TOL has
a renal clearance range of 57–112 ml/min, and TAZ has
a renal clearance rate of 210 ml/min. TOL has a total
clearance range of 68–112 ml/min, and TAZ has a total
clearance of 340ml/min. Compared with TAZ, TOL results
in a lower Vss, longer half-life, lower percentage of protein
binding, and distinct clearance patterns [56], [57], the
key aspects of PK-PD are highlighted in Table 9. Thus, in
combination therapy, the distinct pharmacokinetic profiles
of TOL and TAZ offer complementary advantages, poten-
tially enhancing the overall effectiveness of treatment.
The TOL-TAZ efficacy in diverse patient populations and
bacterial species is detailed in Table 10.

Safety profile and adverse events

The safety profile of TOL-TAZ was generally comparable
to that of the comparator in clinical trials. Common side

effects included gastrointestinal issues, C. difficile infec-
tions, headaches, pyrexia, and abnormal liver function
tests. Interestingly, the results of the trial in which high-
dose TOL-TAZ was used for pneumonia suggested a
greater risk of serious adverse events. In trials with a
standard TOL-TAZ dose of 1.5 g every 8 hours, approxi-
mately 58% to 62% of the patients reported any adverse
events, with 17.5% to 19% being drugrelated. Noteworthy
side effects in these cases were gastrointestinal symp-
toms, sleeplessness, and abnormal liver function tests
[58], [59]. In a study by Pogue et al. [60], 63% of 100
patients with MDR/XDR P. aeruginosa infections were on
high-dose TOL-TAZ. Among the clinical outcomes, six cases
of acute renal damage and four instances of C. difficile
infection were noted, although safety data were not sep-
arately discussed. In a study conducted by Bassetti et al.
[61], [62], drug-related adverse events were observed in
101 patients. Among the reported adverse events,
gastrointestinal issues and abnormal liver function test
results were identified as the primary concerns. Approx-
imately 30% of these patients received high-dose TOL-
TAZ.

3. Cefepime–zidebactam (CEP-ZID)

CEP and ZID (WCK 5222®) are unique combinations;
zidebactam is a bicycloacyl hydrazide component that
has built-in antibacterial action in addition to acting as a
β-lactamase inhibitor. Zidebactam’s dual action protects
cefepime against β-lactamase hydrolysis and simulta-
neously expands its antibacterial range. The in-vitro effec-
tiveness of CEP–ZID and other antibacterial agents on a
panel of clinical isolates that were well characterized and
resistant to several drugs was recently examined. This
investigation focused especially on a variety of carba-
penemase manufacturers, resulting in a thorough evalu-
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Table 6: Ceftazidime-avibactam treatment outcomes in diverse patient populations

ation of the combination’s efficacy against challenging
Gram-negative isolates. The studyelucidated the efficacy
of CEP-ZID in light of changing resistance patterns and
new threats from MDR bacteria [63].
Although ZID is a non-β-lactam compound with inhibitory
effects on class A and MBLs and targets PBP2, it still be-
longs to the diazabicyclooctane (DBO) class, much like
avibactam. Unlike the four recently approved β-lactam/
β-lactamase inhibitor combinations, ZID uniquely impacts
MBLs. While CEP-ZID has shown promising in-vitro activity
against MBL-positive pathogens, it is not yet approved
for clinical use. Recent studies have shown a notable
90% to 100% susceptibility to CEP-ZID among 35 MBL-
positive CPE strains, including those co-producing serine
β-lactamases [64]. The rise of MDR Gram-negative bac-
teria is a major threat. CEP kills bacteria by disabling cell-
wall formation, whereas ZID protects CEP frombreakdown
and potentially aids in cell-wall disruption. This synergy
broadens the effectiveness of CEP-ZID against resistant
bacteria, including those with MBL enzymes, which is a
growing concern. Early studies revealed promising activity
against MDR bacteria, particularly MBL-positive strains.

While not yet approved for clinical use, CEP-ZID’s potential
as a weapon against MDR Gram-negative bacteria is
significant. The bacterial susceptibility and resistance
profile (CEP–ZID) [64], [65] is presented in Table 11 and
Table 12.

Pharmacokinetic and pharmacodynamic
characteristics

The pharmacokinetic analysis provided by the manufac-
turer for WCK 5222, indicates that ZID has a half-life of
1.84 to 2.39 hours, while CEP has an average half-life of
two hours. Both drugs are primarily excreted through the
kidneys. ZID shows dose-proportional increases in AUC0-∞
and Cmax, whereas CEP exhibits linear pharmacokinetics
across different doses. These findings offer valuable in-
sights into the clinical dosing and safety of WCK 5222.
However, no human PK-PD studies have been published
for the CEP-ZID combination.
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Table 7: Ceftolozane-Tazobactam susceptibility in key bacterial populations

Table 8: Resistance profile of Ceftolozane-Tazobactam

9/24GMS Hygiene and Infection Control 2025, Vol. 20, ISSN 2196-5226

Marzooka et al.: Revitalizing cephalosporins: The promise of β-lactamase ...



Table 9: Key aspects of pharmacokinetic therapy and pharmacodynamic profile of Ceftolozane and tazobactam

Efficacy and safety

Carbapenem-resistant P. aeruginosa infections, particu-
larly those involving MBL-producing strains, are challeng-
ing to treat due to limited therapeutic options and high
mortality rates. Traditional treatments like polymyxins are
often hampered by poor pharmacokinetics and significant
side effects. In one case involving an extensively drug-
resistant (XDR) P. aeruginosa producing NDM, conven-
tional therapies worsened the condition. However, the
successful use of WCK 5222 as salvage therapy in a pa-
tient with acute T-cell leukemia demonstrated its efficacy,
with the treatment showing consistent activity against
XDR strains, including MBL producers, and resulting in a
positive outcome with no adverse events [66]. Addition-
ally, another case report highlights the compassionate
use of WCK 5222 for treating a drug-resistant NDM-ex-
pressing P. aeruginosa infection in a patient with intra-
abdominal infection-induced sepsis [67]. The use of
CEP/ZID has also been reported for the successful
treatment of sino-pulmonary infections and skull-based
osteomyelitis caused by NDM-producing P. aeruginosa
in a renal transplant recipient [68]; vide supra for its ef-
ficacy against resistant strains. Its efficacy in pediatric
patients also holds promising hope in the treatment of
PAN drug-resistant P. aeruginosa in lung empyema [69].
Furthermore, its in-vivo efficacy against carbapenem-
resistant A. baumannii has been demonstrated in neu-
tropenic murine pneumonia and thigh infection models
[70], [71], [72], [73]. Studies have also reported its in-

vivo activity against K. pneumoniae producing KPC and
OXA-48-like enzymes in murine models [74].

4. Cefepime–enmetazobactam
(CEP-ENZ)

In the ongoing global fight against antibiotic-resistant
bacteria, particularly enterobacteriaceae, ENZ – formerly
known as AAI101 – stands as a ground-breaking weapon.
Driven by ESBLs, third-generation cephalosporin (3GC)-
resistant Enterobacteriaceae are a major priority patho-
gen recognized by the World Health Organization. Each
year, they cause an astounding 50 million severe infec-
tions globally [75], [76]. Class A β-lactamases that are
resistant to tazobactam are successfully defeated by the
new β-lactamase inhibitor ENZ, which works through a
unique mechanism. The dynamic pairing of ENZ and the
fourth-generation cephalosporin CEPdemonstrates po-
tency comparable to meropenem and outperforms
piperacillin-tazobactam against recent clinical isolates of
enterobacteriaceae [76], [77]. As an empirical treatment
to spare carbapenemusage, CEP-ENZ is effective against
organisms coproducing OXA-48 β-lactamases and AmpC,
especially in areas where ESBL-producing bacteria are
common [78], [79].
The FDA, EMA and CMHP have approved Exblifep (Orchid
Pharma), a CEP-ENZ combination to treat cUTIs in people
≥18 years of age, which is a noteworthy development in
the battle against antibiotic resistance. The superiority
of ENZ over piperacillin-tazobactam both in terms of
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Table 10: Ceftolozane and tazobactam treatment outcomes in diverse patient populations

clinical cure and microbiological eradication represents
amajor milestone, resulting in its historical approval. This
achievement was observed during a worldwide phase-III
study, highlighting the efficacy and potential impact of
ENZ in combating antibiotic-resistant infections. It has
an excellent success rate of 79.1% and a safety profile
like that of piperacillin-tazobactam (58.9%) [80], [81],
[82].

Mode of action

ENZ is a newly developed β-lactamase inhibitor with im-
proved bacterial cell penetration and potency, attributed
to the presence of a single methyl group, which differen-
tiates it from tazobactam. Its neutral charge enhances
its ability to penetrate the bacterial cell wall more effec-
tively. The CEP-ENZ combination selectively inhibits many
class A β-lactamases, including CTX-M, TEM, KPC and
SHV. On the other hand, it does not obstruct car-
bapenemases or class D β-lactamases.When used alone,
ENZ has no inhibitory effect on Gram-negative bacteria.
The combination has shown in-vitro effectiveness against
AmpC- and ESBL-producing Enterobacterales, as well as

P. aeruginosa, with CEP being the key contributor to this
activity [83]. ENZ dramatically increases cefepime’s ther-
apeutic effectiveness, according to in vivo trials conducted
on a mouse model of septicemia [84]. This combination
offers a possible therapeutic option and supports “car-
bapenem sparing” approaches for infections caused by
enterobacterales that produce ESBLs. Notably, ENZ has
no antibacterial action against S. Maltophilia or A. bau-
mannii [85].

Bacterial susceptibility and resistance profile

ENZ significantly enhances CEP’s potency against En-
terobacteriaceae, particularlyK. pneumoniae and E. coli,
reducing MIC values by up to eightfold. While its efficacy
against P. aeruginosa is limited, ENZ demonstrates su-
periority over tazobactam, especially for ESBL-producing
K. pneumoniae. Clinical data reveal high susceptibility
rates for CEP/ENZ against enterobacteriaceae, reaching
98.1%, with promising activity against ESBL-producing
strains [86], [87], [88], [89]. However, its effectiveness
against KPC-producing organisms remains limited.
CEP/ENZ maintains high susceptibility rates (98.3% to
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Table 11: Cefepime/Zidebactam susceptibility in key bacterial populations (modified according to [65])

Table 12: Resistance profile of cefepime-zidebactam

98.8%) even against 3GC-resistant strains, exhibiting ro-
bust activity against diverse resistancemechanisms such
as ESBLs (susceptibility rates: 98.9% to 99.9%) [90]. An
overview of regional disparities in Enterobacterales sus-
ceptibility to CEP/ENZ is presented in Table 13. Clinical
trials for cUTIs reveal a complex efficacy profile, with
susceptibility varying due to the presence ofmultiple beta-
lactamase genes and resistance mechanisms. No cross-

resistance with non-beta-lactam antibiotics has been
noted, suggesting a potential option for carbapenem- and
cephalosporin-resistant infections. However, susceptibility
testing remains essential for treatment decisions [91].
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Table 13: Geographic variations in the susceptibility of Enterobacterales to cefepime enmetazobactam (modified according to
[90])

Pharmacokinetic and pharmacodynamic
characteristics

The PK profiles of CEP and ENZ followed a standard two-
compartment model with time-delineated intravenous
input and first-order clearance. However, a prolonged
terminal gamma phase of drug elimination was noted for
CEP, requiring the addition of a third compartment for
accurate representation of drug concentrations at later
time points. In murine models, both drugs readily pene-
trate the epithelial lining fluid (ELF) of the lungs, without
evidence of system hysteresis. Combination therapy with
CEP/ENZ showed promising efficacy, especially against
K. pneumoniae, with dose-response relationships estab-
lished throughmurine experiments. Fractionation studies
revealed no significant differences in antibacterial activity
across different ENZ schedules. These findings support
the potential of CEP/ENZ as a therapeutic option against
multidrug-resistant pathogens, highlighting the import-
ance of considering pharmacokinetics and pharmacody-
namics in treatment optimization [92]. The PKPD charac-
teristics of CEP/ENZ are discussed in Table 14, and the
key aspects of PK-PD are articulated in Table 15.

Safety profile and adverse events

The adverse effects of CEP-ENZ share many of the com-
mon side-effects seen with other β-lactam/β-lactamase
inhibitor (BL/BLI) combinations such as Avycaz®, Embla-
veo®, or Zerbaxa®. The combination has significantly ad-
vanced the treatment of cUTIs and pneumonia in adults,
although its use requires careful safety assessment by
healthcare providers. While generally well tolerated, the
combination may lead to serious adverse reactions, par-
ticularly in patients with a history of severe hypersensitiv-
ity to CEP or other beta-lactam antibiotics. Neurological

complications, such as encephalopathy or seizures, are
possible, especially in individuals with renal dysfunction,
necessitating dose adjustments. Vigilance for C. diffi-
cile-associated diarrhoea (CDAD) is crucial because of
the risk associated with antibiotic use. Other safety con-
siderations include the potential for positive Coombs’
tests, alterations in blood clotting time, and the emer-
gence of drug-resistant bacteria. Although clinical trials
have reported manageable side effects such as elevated
liver enzymes and mild allergic reactions, caution is ad-
vised in elderly patients and those with renal impairment,
who may require potential dose adjustments. In the case
of overdose, supportive care is recommended, with
hemodialysis as a possible option to remove excess drug.
Healthcare professionals should thoroughly evaluate po-
tential adverse effects and patient suitability before pre-
scribing the CEP/ENZ combination [91].

5. Cefepime–taniborbactam

Taniborbactam, initially known as VNRX-5133, was de-
veloped by Venatorx Pharmaceuticals in 2014, with a
patent filed that same year. It is a cyclic boronate BLI,
designed to combat antibiotic-resistant bacteria. Cefe-
pime-taniborbactam, an investigational intravenous anti-
biotic combination, pairs CEP, a fourth-generation ceph-
alosporin, with taniborbactam, a bicyclic boronate BLI
that has a broad inhibitory profile against both serine-
based and MBLs. This combination is being developed
to treat HABP, VABP and cUTIs, including pyelonephritis.
The U.S. FDA has accepted its new drug application and
set a PDUFA date of February 22, 2024, particularly for
review in the treatment of cUTIs.
A key feature of taniborbactam is its activity against
various MBLs, unlike other BLIs. This strength, however,
comes with a caveat – it should be reserved for cases
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Table 14: Pharmacokinetic parameters based on murine model data (modified according to [92])

Table 15: Key aspects of PK-PD of cefepime-enmetazobactam (modified according to [92])

where piperacillin/tazobactam or CEP/ENZ is not appro-
priate, and only if ceftazidime-avibactam proves ineffec-
tive. Multidrug-resistant Gram-negative bacteria, espe-
cially carbapenem-resistant Enterobacterales and P.
aeruginosa, present a significant healthcare challenge
due to resistance mechanisms, such as beta-lactamase
production. Research has demonstrated taniborbactam’s

broad inhibitory efficacy, restoring CEP’s antibacterial
activity and offering a promising therapeutic option for
combating MDR Gram-negative bacterial infections [93],
[94], [95], [96].

14/24GMS Hygiene and Infection Control 2025, Vol. 20, ISSN 2196-5226

Marzooka et al.: Revitalizing cephalosporins: The promise of β-lactamase ...



Mode of action

CEP acts by inhibiting PBPs, particularly PBP3. PBPs are
crucial enzymes responsible for cross-linking peptido-
glycan polymers, which are vital components of the bac-
terial cell wall. By specifically binding to PBP3, CEP dis-
rupts this cross-linking process, hindering the formation
of a structurally sound cell wall. This ultimately leads to
cell-wall instability and bacterial cell death.
Tanibactam, a potent beta-lactamase inhibitor, addresses
a key resistance mechanism employed by MDR bacteria.
Beta-lactamases are enzymes produced by some bacteria
that can hydrolyse (breakdown) beta-lactam antibiotics,
rendering them ineffective. Tanibactam specifically inhib-
its these beta-lactamases, preventing the degradation of
CEP. This ensures that the antibiotic retains its bactericid-
al activity against MDR bacteria that otherwise possess
beta-lactamase-mediated resistance [96].
The synergy between CEP and taniborbactam lies in their
coordinated action against MDR bacteria. While CEP di-
rectly targets the bacterial cell wall, MDR bacteria may
employ beta-lactamases to counter its effects. By inhibit-
ing these beta-lactamases, tanibactam interferes with
the bacterial defense mechanism. This enables CEP to
exert its full bactericidal effect, overcoming resistance
mechanisms and efficiently eliminating MDR bacteria.
Together, CEP and taniborbactam form a potent combi-
nation, with CEP disrupting cell-wall synthesis and
taniborbactam, ensuring its efficacy by preventing
breakdown. This coordinated approach offers a significant
advantage in combating MDR Gram-negative infections,
effectively addressing established resistancemechanisms
[96].

Bacterial susceptibility and resistance profile

Antimicrobial susceptibility studies have revealed alarm-
ing patterns of resistance in different bacterial pheno-
types. CEP/taniborbactam is highly effective, showing
near-universal susceptibility across studied multidrug-
resistant bacterial strains. This is a positive advancement
in the battle against antibiotic resistance (AMR). On the
other hand, there has been an increase in resistance to
well-known antibiotics, such as ceftolozane-tazobactam
and piperacillin-tazobactam, especially in populations
with ESBL or MDR phenotypes. This emphasizes how
AMR is becoming a larger problem and how urgently new
antibiotic drugs need to be researched and developed.
The in-vitro susceptibility ofmultidrug-resistant Enterobac-
terales to CEP/taniborbactam compared with established
antibiotics is depicted in Figure 2.
A recent study by Karlowsky et al. [97] evaluated the ef-
ficacy of CEP/taniborbactamagainstMDRGram-negative
bacteria. Conducted by IHMA and Venatorx Pharmaceu-
ticals, the study analyzed strains of carbapenem-resistant
Enterobacterales (CRE) and carbapenem-resistant Pseu-
domonas aeruginosa (CRPA) isolated from patients
between 2018 and 2020. The results demonstrated a
significant improvement in susceptibility rates compared

to conventional β-lactam/β-lactamase inhibitor combina-
tions, including ceftazidime-avibactam, ceftolozane-tazo-
bactam,meropenem-vaborbactam, and piperacillin-tazo-
bactam. Notably, CEP/taniborbactam exhibited greater
than a 64-fold increased potency against Enterobac-
terales, with 99.7% of isolates inhibited at 16 mg/mL.
Similar effectiveness was observed against P. aeruginosa,
with a 4-fold increase in susceptibility and over 97% in-
hibition at the same concentration, even against strains
with the VIM carbapenemase enzyme. The key bacterial
susceptibility and resistance profiles are discussed in
Table 16.

Pharmacokinetic and pharmacodynamic
characteristics

Lasko et al. [98] demonstrated significant bacterial erad-
ication in a neutropenic murine model of cUTI with CEP/
taniborbactam, even against CEP-resistant clinical isolates
harboring various enzymes, with an MIC of 32 mg/L. Hu-
man trials, including a phase-III study for cUTI treatment
and safety assessment in healthy individuals, are ongoing
[99]. Dowell et al. [100] found that taniborbactam when
administered in human subjects exhibited dose-propor-
tional pharmacokinetics, minimal accumulation, ~90%
renal elimination, and good tolerability with no serious
adverse events. A study focusing on lung penetration and
efficacy against pneumonia analyzed the PK-PD profile
of CEP/taniborbactam in twenty participants. Comparable
plasma concentrations of taniborbactamand CEP before
and after the third dose resulted in steady-state concen-
trations [101]. The findings of pharmacokinetics in plas-
ma, ELF, and alveolarmacrophages (AM) from a broncho-
scopy study involving 20 participants are presented in
Table 17.
Taniborbactam exhibited a 100% unbound fraction in
plasma, with steady-state fAUC0–8 values consistent with
previous phase-I findings. Cefepime, in contrast, showed
a variable unbound fraction. Regarding lung penetration,
taniborbactam demonstrated modest distribution into
ELF and AM, with approximately 17% penetration effi-
ciency into ELF and peak AM concentrations at 8 hours.
For pharmacodynamics, the fAUC0–24:MIC ratio in free
plasma is critical for taniborbactam’s efficacy against
MDR pathogens. Abdelraouf et al. [102] identified the
optimal PK/PD indices for cefepime-taniborbactam in
murine thigh infectionmodels, demonstrating that dosing
frequency did not impact taniborbactam’s potentiation
of cefepime, with fAUC0–24:MIC values supporting signific-
ant bacterial reduction against Enterobacterales and P.
aeruginosa, and the HSR dose (0.5 g q8h) achieving ≥1
log kill against all test isolates.

Safety profile and adverse events associated

A recent clinical safety evaluation investigated the toler-
ability of CEP/taniborbactam, a promising antibiotic
combination that targets MDR Gram-negative bacteria.
The study included 20 subjects who received three doses
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Figure 2: Average bacterial susceptibility toantimicrobials

Table 16: Cefepime-taniborbactam susceptibility in key bacterial populations and resistance profiles (modified according to
[97])

of the drug. Notably, co-administration was well tolerated,
with no reports of serious adverse events or fatalities.
Treatment-emergent adverse events (TEAEs) were ob-
served in 14 subjects, with the most frequent being a
temporary increase in white blood cell count (leucocyto-
sis), which affected six participants. Other TEAEs reported
by at least two subjects includedmild elevations in biliru-
bin levels, dizziness, chills, slight changes in kidney

function, and variations in blood clotting parameters.
Importantly, all TEAEs were classified as mild in severity,
and no subject discontinued the study because of adverse
effects [100].
Additionally, the bronchoscopy and bronchoalveolar la-
vage procedures used for lung assessment were well
tolerated by all participants, with only two requiring min-
imal conscious sedation. These findings contribute to the
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Table 17: Cefepime-taniborbactam pharmacokinetics in plasma, epithelial lining fluid, and alveolar macrophages from a
bronchoscopy study (n=20) (modified according to [101])

growing body of evidence supporting a favorable safety
profile for CEP/taniborbactam, suggesting its potential
as a safe and effective therapeutic option for patients
battling serious infections caused byMDRGram-negative
bacteria [99].

Conclusion
The emergence of MDR Gram-negative bacteria, particu-
larly with the rise of ESBLs, carbapenemases, and other
β-lactamases, presents a significant challenge to antibi-
otic therapy. However, the development of novel β-lac-
tam/β-lactamase inhibitor (BLBLI) combinations such as
cefepime-zidebactam, cefepime-enmetazobactam, and
cefepime-taniborbactamoffers promising solutions. These
combinations demonstrate potent antibacterial activity
against various resistance mechanisms, providing effec-
tive treatment options for challenging pathogens such as
Enterobacterales, P. aeruginosa, and A. baumannii. They
also offer a carbapenem-sparing alternative for common
infections caused by ESBL/AmpC-producing Enterobac-
terales and non-carbapenem-resistant P. aeruginosa.
Despite their high cost, current recommendations suggest
their use as definitive therapy for resistant isolates, with
specific combinations preferred for certain resistant en-
terobacterales. Nevertheless, ongoing research and de-
velopment of β-lactamase inhibitors are crucial to address
the evolving landscape of antibiotic resistance. The
emergence of new classes of β-lactamase inhibitors holds
promise for protecting valuable antibiotics and overcom-
ing resistance mechanisms. Overall, the development
and implementation of novel BLBLI combinations repres-
ent significant progress in combatingMDRGram-negative
bacteria, but continued efforts are essential to overcome
emerging resistance threats.
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