Anhang 1

Appendix 1

Elliptisch-zirkuläre Approximationsmethode

Für die Bestimmung der Frequenzbandzuordnung wurde gemäß der Arbeit von Alexiades et al. [1] ein konstanter Abstand von 0,5 mm zwischen der lateralen Wand (LW) und dem Corti-Organ angenommen. Basierend auf dieser Annahme wurden die Parameter A_{OC} und B_{OC} mit folgenden Berechnungen ermittelt:

$$A_{OC} = A_{LW} - (2 * 0.5 m m) = A_{LW} - 1 m m$$
 Gleichung 2
 $B_{OC} = B_{LW} - (2 * 0.5 m m) = B_{LW} - 1 m m$ Gleichung 3

Die Parameter A_{OC} und B_{OC} wurden anschließend zusammen mit der zuvor berechneten Cochlea Duct Länge (CDL_{LW} (θ)) unter Verwendung der Gleichung von Alexiades et al. [1] genutzt, um die CDL_{OC} und CDL_{OC} (θ) mit den folgenden Gleichungen zu berechnen:

$$CDL_{OC}(\theta) = [pBTL(\theta) * [1,18 * (AOC) + 2,69 * (BOC) - \sqrt{(0,72 * A_{OC} * B_{OC})}]] + HRL$$
 Gleichung 4
 $CDL_{OC} = [1,71 * [1 * 1,18 * (AOC) + 2,69 * (B_{OC}) - \sqrt{(0,72 * A_{OC} * B_{OC})}]] + HRL$ Gleichung 5

Die Berücksichtigung der "Hook"-Region [21] erfolgte mit einem Durchschnittswert von 2,5 mm (hook region length, HRL=2,5 mm). Die Größe CDLoc beschreibt die vollständige Länge des Corti-Organs einschließlich der Hook-Region, während CDLoc(θ) die Länge des Corti-Organs für einen vorgegebenen Winkel θ beschreibt.

Für die Umrechnung der linearen Länge entlang der Basilarmembran in die entsprechende Frequenz in Hertz (Hz) wurde die Greenwood-Funktion [14] verwendet:

$$f = A (10^{ax} - K)$$
 Gleichung 6

Hierbei steht "f" für die charakteristische Frequenz eines Tons in Hz, "A" beträgt 165,4 Hz für die humane Cochlea, "a" ist der Parameter 2,1 und "K" ist der Parameter 0,88. Der Wert "x" repräsentiert den Abstand entlang der Basilarmembran von der Basis bis zu einem bestimmten Punkt.

Durch Einsetzen aller Konstanten verbleibt "x" als einzige Variable. Durch Anwendung von CDLoc und CDLoc in der Greenwood-Gleichung konnte die Frequenz an jedem Ort der Basilarmembran mit der folgenden Gleichung berechnet werden:

$$f = 165,4 * (10^{(2,1*((CDL_{OC}-CDL_{OC}(\theta))/CDL_{OC})} - 0,88)$$
 Gleichung 7

Appendix 2

Tabelle 4 (zu Abbildung 1): Tonotope Zuordnung (in Hz), bestimmt aus dem Elektrodeninsertionswinkel der apikalsten Elektrode für verschiedene Elektrodenträger, Standardabweichung (SD), Spiralganglion Ebene (SG-Freq), Organ of Corti Ebene (OC-Freq), unvollständig inserierte Elektroden N=5 ausgenommen.

	SG Frequenz			OC Frequenz			
Elektrodentyp	Mittelwert	Median	SD	Mittelwert	Median	SD	Anzahl
PRECURVED	1042,6	987,1	236,0	1170,0	1114,8	301,5	34
STRAIGHT	948,7	919,1	163,6	1064,2	1022,3	218,6	9
CONTOUR SLIM	739,7	717,2	139,0	786,7	741,5	181,3	10
FLEX26	403,0	388,5	127,2	454,9	452,9	114,7	10
FLEX28	279,8	239,4	109,3	326,6	282,6	123,6	33

Tabelle 5: Varianzanalyse Frequenzversatz (FV) und Elektrodentyp für die apikalste Elektrode N=95 (Kruskal-Wallis-Tests), unterteilt in Spiralganglion (SG) und Organ of Corti (OC) Ebene. Unvollständig inserierte Elektroden N=5 ausgenommen.

Paarweise Vergleiche von Elektrodentyp							
Sample 1-Sample 2	Teststatistik	StdFehler	Standardteststatistik	Sig.	Anp. Sig.a		
FLEX28-FLEX26	2,553	9,951	,257	,798	1,000		
FLEX28-CONTOUR SLIM	27,603	9,951	2,774	,006	,055		
FLEX28-STRAIGHT	29,470	10,367	2,843	,004	,045		
FLEX28-PRECURVED	51,348	6,787	7,566	<,001	,000		
FLEX26-CONTOUR SLIM	25,050	12,329	2,032	,042	,422		
FLEX26-STRAIGHT	26,917	12,667	2,125	,034	,336		
FLEX26-PRECURVED	48,795	9,951	4,903	<,001	,000		
CONTOUR SLIM- STRAIGHT	1,867	12,667	,147	,883,	1,000		
CONTOUR SLIM- PRECURVED	23,745	9,951	2,386	,017	,170		
STRAIGHT-PRECURVED	21,879	10,367	2,110	,035	,348		

Jede Zeile prüft die Nullhypothese, dass die Verteilungen in Stichprobe 1 und Stichprobe 2 gleich sind. Asymptotische Signifikanzen (zweiseitige Tests) werden angezeigt. Das Signifikanzniveau ist ,050.

Tabelle 6 (zu Abbildung 2): Übersicht der Einführwinkel, Hersteller unabhängig, in Bezug auf die Ergebnisse des Freiburger Einsilbertests (%), Standardabweichung (SD), unvollständig inserierte Elektroden N=5 ausgenommen.

	Einsilberverstehen					
Einführwinkel	Mittelwert	Median	SD	N		
200–250°	45,0	45,0		1		
250–300°	55,6	52,5	28,6	8		
300–350°	66,4	75,0	24,5	21		
350–400°	67,9	70,0	20,8	17		
400–450°	70,6	80,0	19,6	9		
450–500°	65,0	62,5	27,8	8		
500–550°	56,0	67,5	27,3	12		
550–600°	59,4	55,0	21,3	16		
600–650°	62,5	67,5	25,3	4		

^a Signifikanzwerte werden von der Bonferroni-Korrektur für mehrere Tests angepasst.