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Abstract
This paper presents the modelling approaches performed to automat-
ically predict the modality of images found in biomedical literature.
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Various state-of-the-art visual features such as Bag-of-Keypoints com-
puted with dense SIFT descriptors, texture features and Joint Composite
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generated using attribute importance derived from a χ2-test. Computing
the principal components separately on each feature, dimension reduc-
tion as well as computational load reduction was achieved. Various
multiple feature fusions were adopted to supplement visual image in-
formation with corresponding text information. The improvement ob-
tained when using multimodal features vs. visual or text features was
detected, analysed and evaluated. Random Forest models with 100 to
500 deep trees grown by resampling, a multi class linear kernel SVM
with C=0.05 and a late fusion of the two classifiers were used for
modality prediction. A Random Forest classifier achieved a higher ac-
curacy and computed Bag-of-Keypoints with dense SIFT descriptors
proved to be a better approach than with Lowe SIFT.

Keywords: biomedical literature, multimodal imaging, principal
component analysis, Random Forest, support vector machines

Zusammenfassung
Dieser Beitrag stellt Modellierungsansätze vor, die die Modalität von
Bildern der biomedizinischen Literatur automatisch vorhersagen. Ver-
schiedene state-of-the-art-Verfahren der visuellenMerkmalsextraktion,
wie Bag-of-Keypoints mit Dense-SIFT-Deskriptoren, Joint Composite-
Descriptor und Fuzzy Color-Histogram wurden eingesetzt, um die cha-
rakteristische Gegebenheiten der Bilder darzustellen. Für die textuellen
Merkmalsextraktion wurde das Bag-Of-Words-Verfahren angewandt.
Die Reduktion des Lexikons erfolgtemittels des χ2-Tests. Die Anwendung
der Principal Components Analysis führte zur Reduzierung der Merk-
malsdimension. Eine Verbesserung der Klassifikationsrate wurde durch
unterschiedliche Kombinationen zwischen visuellen und textuellen
Merkmalen erzielt. Die Lernverfahren Random Forest mit 100 bis 500
Entscheidungsbäumen und SVM mit einer linearen Kernel-Funktion
und dem C-Parameter (C=0,05) kamen zum Vorhersagen der Modalitä-
ten zum Einsatz. Bessere Klassifikationsraten wurdenmit dem Lernver-
fahren Random Forest erzielt. Mit der Anwendung von Dense-SIFT-De-
skriptoren an Stelle von Lowe-SIFT-Deskriptoren wird das Ergebnis zu-
sätzlich verbessert.

Schlüsselwörter: biomedizinische Literatur, multimodale Bildgebung,
Hauptkomponentenanalyse, Random Forest, Support Vector Machines
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Figure 1: Modality hierarchy to be used for prediction [11]

1 Introduction
Clinicians have implied on the importance of themodality
of an image in several user-studies. The usage ofmodality
information significantly increases the retrieval efficiency,
thus the image modality has become an essential and
relevant factor regarding medical information retrieval,
as this helps to filter out irrelevant information from the
retrieval process [1].
This task was proposed at the ImageCLEF 2015 Medical
Classification Task [2] and this paper describes the
modelling approaches done by the Biomedical Computer
Science Group (BCSG) [3]. Several approaches were used
by participating research groups such as the image tensor
decomposition technique with maximum margin regres-
sion (MMR) in [4], 2D color feature based covariance
descriptors proposed in [5] and convolutional neural
networks in [6].
In ImageCLEF 2010–2013, a similar task was proposed.
The two differences to ImageCLEF 2015was an additional
class ‘COMP’ representing compound figures with at least
two subfigures and the size of the distributed collection.
The number of figures distributed for the task was
2,933 images. Various research teams proposed different
approaches. In [7], a spatial pyramid on opponent SIFT
with χ2 SVM was applied. Multiple color and texture fea-
tures combined with different fusing techniques were
used in [8].
The aim of the ImageCLEF 2015 Medical Task was to
adjust the task, by removing the compound class to avoid
possible bias and by increasing the number of images in
the collection to observe accuracy outcome on a larger
database. The distributed image collection in ImageCLEF
2015 contains a total number of 6,776 images.

4,532 images in the training set and 2,244 images in
the independent evaluation set. The proposed modality
class hierarchy in Figure 1 was developed for images that
occur in biomedical literature. The journal articles corres-
ponding to the images were distributed as XML files, giv-
ing the opportunity of using text information, such as
captions and MeSH terms.
The objective in this proposed work is to extract visual
and text information from biomedical literature images
in a large database, model and train classifiers to auto-
matically predict the modality using the hierarchical
classification scheme in Figure 1. The classification
scheme was proposed in [9]. Dimension reduction is
computed using the principal component analysis as this
was not evaluated in previous approaches.
The proposed approach can be mapped to other classi-
fication problems in the medical field. For example, in-
formation from clinical reports found in the Picture
Archival and Communication System (PACS) can be used
to index these reports to a defined classification scheme.
This leads to a more effective case retrieval search, as
text information from clinical reports can be combined
with the modality of medical images to filter relevant
cases.

2 Materials and methods
This section describes in subsection 2.1 the image
database distributed for the proposed task. Themethods
used for visual feature extraction are detailed in subsec-
tion 2.2 and for text feature extraction in section 2.3. In
subsection 2.4, the setup used for classification is de-
scribed together with evaluated learning algorithms.
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2.1 Distributed image collection

Before extracting features and training classifiers, an
explorative analysis on the distributed training database
was done. Some modality categories were represented
by few annotated examples, thus the expansion of the
original collection was strived in order to counteract the
imbalanced dataset. The result of the analysis can be
seen in Figure 2. The modality ‘GFIG’ which represents
‘statistical figures, graphs and charts’ has over 2000
annotated images in comparison to ‘GPLI’ representing
‘program listings’ with 1 annotated example.

Figure 2: Explorative analysis on the training set of the
distributed image collection

Hence, additional datasets were created using the images
distributed at the ImageCLEF 2013 AMIA Medical Task
[1]. This could be done, due to the similarity of themodal-
ity hierarchies used at both tasks. The four datasets de-
tailed below were used for modality prediction:

1. DataSet1 (DS1): The original training collection distrib-
uted for the subfigure classification task in ImageCLEF
2015 Medical Classification.

2. DataSet2 (DS2): Additive to DataSet1, the complete
collection distributed in ImageCLEF 2013 AMIA Med-
ical Task. The collection contains over 300,000 anno-
tated images from over 45,000 biomedical research
articles of the PubMed Central repository (http://
www.ncbi.nlm.nih.gov/pmc/) hosted by the U.S. Na-
tional Library of Medicine.

3. DataSet3 (DS3): Additive to DataSet1, the collection
distributed for the Modality Classification Image-
CLEF2013 AMIAMedical Subtask. This is a sub-collec-
tion of DataSet2 and contains figures annotated into
31 categories. Figures belonging to the compound
figure ‘COMP’ category were eliminated to attain the
same categories as in DataSet1.

4. DataSet4 (DS4): The sub-collection for the Modality
Classification Task as in ImageCLEF 2013 AMIA
Medical Task but without the ‘COMP’ category.

The distributed collection for training and evaluation
contained grayscale as well as coloured images. Figure 3
shows some examples of the images.

2.2 Visual features

Medical imaging techniques have been enhancing over
the years, bringing along additional possibilities of de-
tailed diagnosis as well as several useful clinical applica-
tions. These techniques have different acquiringmethods
and hence several feature extractionmethods are needed
to capture the various characteristics found in medical
imaging [10]. Analysing the modality classification hier-
archy, it is necessary that the images are completely
represented. Global features were extracted from the
complete image and local features from subregions of
the images.
The images were visually represented using various state-
of-the-art feature extractionmethods, which are common
techniques used in computer vision.

2.2.1 Local features

Bag-of-Keypoints

In [11], [12], the Bag-of-Features approach was shown
to achieve high prediction results. This approach origin-
ates from the Bag-of-Words (BoW) approach which is
frequently used for text categorisation. The Bag-of-
Keypoints (BoK) proposed in [13] is based on vector
quantisation of affine invariant descriptors of image
patches. The advantages of this approach are computa-
tional efficiency, simplicity and it’s invariance to affine
transformations. These features have been extracted and
represented using a 12000-dimensional vector. The Bag-
of-Keypoints has become a common state-of-the-art
technique for image classification.
The functions used for feature extraction are from the
VLFEAT library [14]. Dense SIFT descriptors were chosen
as visual key-points. The key-points were uniformly extrac-
ted at several resolutions with an interval grid of 4 pixels.
The vl-phow function of [14] was used to extract the
descriptors. To reduce computational time, k-means
clustering with approximated nearest neighbours (ANN)
[12] was applied. The k-means technique was computed
on randomly chosen dense SIFT descriptors using the
vl-kmeans function to partition into k clusters in order to
minimise the within-cluster sum of squares [15]. Several
parameters were used to tune the extraction of the BoK
feature with respect to this specific task and data collec-
tion. The tuning was done by applying the approach with
parameter values other than default and analysing the
effect on prediction accuracy. An excerpt of these para-
meters is listed below:

• Initialisation: The centres of k-means clustering were
initialised with random points.

• Codebook size: The number of keypoints used for
vector quantisation was 12,000.
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Figure 3: Examples of distributed images

• Convergence: Amaximumnumber of 20 iterations was
applied to allow the k-means algorithm to converge.

Detailed description of parameters for the VLFEAT func-
tions can be found in [14].

Pyramid Histogram of Oriented Gradients

The Pyramid Histogram of Oriented Gradients was pro-
posed in [16]. The idea of this approach originates from
two sources: the image pyramid representation of [17]
and the Histogram of Gradient Orientation (HOG) of [18].
The proposed approachmeasures the shape correspond-
ence between two images by the distance between their
descriptors using the spatial pyramid kernel. Hence, the
images can be represented by their local shapes as well
as the spatial layout of the shapes. This feature was
represented using a 630-dimensional vector.

2.2.2 Global features

Basic features

To obtain a global representation of the images, the fol-
lowing high-level features were extracted: brightness,
clipping, contrast, hueCount, saturation, complexity, skew
and energy. These features were extracted using the LiRE
Library [19]. The basic features (BAF) were represented
as an 8-dimensional vector.

Color Edge Directivity Descriptor

The Color and Edge Directivity Descriptor (CEDD) is a low-
level feature proposed in [20]. Using a 3bits/bin quant-
ization, the feature incorporates color and texture inform-
ation in a histogram. This feature is suitable for large
image databases as the CEDD size per image is limited
to 54 bytes. An advantage of the CEDD is the low compu-

tational power compared to that of MPEG-7 Descriptors.
The features were extracted using the cedd-matlab
function and represented as a 144-dimensional vector.

Joint Composite Descriptor

The Joint Composite Descriptor (JCD) is a combination of
two Compact Composite Descriptors: Color and Edge
Directivity Descriptor (CEDD) and Fuzzy Color Texture
Histogram (FCTH) [20]. The color information extracted
from the two descriptors are derived using the same fuzzy
system, hence combining the different texture areas is
taken to be an optimised unification of both descriptors.
The feature is represented as a 168-dimensional vector
and was extracted using [19].

Tamura

The Tamura features are texture features which strive to
correspond to human visual perception and are useful
for feature selection and texture analyser design [21].
The features consist of the following six approximated
basic texture features: coarseness, contrast, directionality,
line-likeness, regularity and roughness and were repre-
sented as a 18-dimensional vector using [19].

Gabor

The texture feature based onGabor functions were extrac-
ted and represented as a 60-dimensional vector [22].

Fuzzy Color Histogram

As the Conventional Color Histogram (CCH) neither con-
siders color similarity across different bins nor color dis-
similarity in the same bin, a new color histogram repre-
sentation Fuzzy Color Histogram (FCH) was presented.
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The proposed approach considers the color similarity of
each pixels color associated with all histogram bins using
the fuzzy-set membership function. Experimental results
have shown that the FCH achieves better results than
the CCH when applied for image indexing and retrieval
[23], [24]. A 10-dimensional vector was used to represent
the FCH features.

2.3 Text features

For text representation, the figure caption belonging to
each image was used. The images in the ImageCLEF
2015Medical Classification task are figures from biomed-
ical literature which were published in PubMed Central
(http://www.ncbi.nlm.nih.gov/pmc/) and are licensed for
redistribution under a creative commons license. For
each image in the collection, the corresponding journal
article can be retrieved using the indexed image ID. The
text representation of all images was computed using the
Bag-of-Words approach.

Bag-of-Words

The Bag-of-Words (BoW) approach is a common method
used for text classification. The text features are extracted
by counting the frequency or presence of words in the
text to be classified [25]. Hence, a dictionary has to be
defined first. The dictionary generation was obtained
using all words from all captions found in the distributed
collection. Various text preprocessing procedures such
as removal of stop-words and stemming using the Porter
stemmer [26] were applied. The Porter stemming tech-
nique aims to automatically remove suffixes in words to
find terms with a common stem which usually have
similar meanings. Striving to generate a dictionary con-
taining relevant words to each modality class, the attrib-
ute importance for all words was computed. This process
was done by vector quantising all figures using the dic-
tionary and then applying the χ2-test on the derivedmatrix.
A final dictionary containing 438 words was obtained by
selecting words with attribute importance over the fixed
cutoff threshold of 0.36 (maximumattribute importance).
Several dictionaries with other cutoff thresholds [minim-
umattribute importance 0 andmean attribute importance
0.15] were created in the development stage. However,
the dictionary containing 438 words (cutoff 0.36) proved
to achieve the best prediction results in the development
set.

2.4 Classifier setup

To reduce computational time, the feature dimensions
were reduced using principal component analysis [27].
The Principal Component Analysis (PCA) replaces the
original variables by a smaller number of derived vari-
ables, the principal components, which are linear combin-
ations of the original variables [28]. The PCA was applied
on all features beside the basic features. Table 1 displays

the original and reduced vector size after computing the
principal component analysis on the features.

Table 1: Descriptors with original and reduced vector sizes

The PCA is separately computed on each feature vector
group, which is displayed in Figure 4. Subsequently, the
best number of principal components needed to describe
the various features were estimated iteratively by model
selection. This step is described in Figure 5. The PCA was
computed on the complete data collection, i.e. training
and test set. The pca function from the MATLAB software
package [29] was used with default values. The applica-
tion of this unsupervised learning proved to be a better
approach in comparison to a separate projection of the
test data.
Several runs were submitted for prediction evaluation
accuracy. These runs are a different concatenation of the
derived principal components from the feature groups.
The reduced vector size for the Gabor features is 0 as
they were not added to the final fused feature vector.
This was done as the principal components from the
Gabor features did not improve prediction accuracy.
During development stage, the ImageCLEF 2015 training
databasewas divided into 10 randomly generated training
and validation datasets using the bootstrap algorithm
[30]. Approximately 68.2 (%) of the images were used for
training and 31.8 (%) for validation. For the official evalu-
ation, the complete training set was used for training and
the distributed test set for prediction. A Random Forest
classifier [31] was used for modality prediction. The
Random Forest approach combines several tree predict-
ors in a way that each tree is dependable on the values
of a Random vector which is sampled independently using
the same distribution for all trees in the forest.
The classifier wasmodelled with the fitensemble function
from the MATLAB software package [29]. The list below
shows an excerpt of parameters from the fitensemble
function that were tuned.

1. Number of trees = 500
2. Number of leaf size = [0.04, 0.06, 0.3]
3. Split criterion = Deviance (max. deviance reduction)
4. Ensemble grown = By resampling

The parameters were tuned by modelling the classifier
with the fitensemble default values. Each parameter is
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Figure 4: Early fusion classifier setup using Random Forest or Support Vector Machines

Figure 5: Iterative step to detect efficient number of principal components

then assigned a different value and the outcome on the
prediction accuracy is noted. When a parameter proves
to achieve better results compared to the default values,
the changed values are used. This step was manually
done repeatedly and is similar to Figure 5.
In addition to the Random Forest classifier, a multiclass
linear kernel Support Vector Machines (SVM) was mod-
elled using the LibSVM library [32]. SVMs are a common
machine learningmethod used for regression and classi-
fication tasks. This step was done in order to compare
prediction accuracies between the two classifiers. SVMs

have been a popular approach in former ImageCLEF
medical challenges [1] and have proved to achieve good
results.
Figure 4 shows the classifier setup for the early fusion
prediction using either the Random Forest learning al-
gorithm or the support vector machines learning al-
gorithm. The late fusion classification setup is similar to
that shown in Figure 4. The final prediction is obtained
by combining the predicted results from the Random
Forest classifier and from the support vector machine
classifier.
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Table 2: Submitted runs for evaluating prediction accuracy

The SVM classifier was tuned similar to the Random
Forest classifier. Several parameters were assigned val-
ues other than the default values and the outcome on
the accuracy is noted. Different kernel functions were
tested. The list below shows the best values for the
svmtrain function.

1. SVM_type = Classification SVM
2. Kernel function = linear
3. Cost parameter = 0.05
4. Probability estimates = 1

3 Results
This section describes the results obtained using the
proposed modelling approach at the ImageCLEF 2015
Medical Classification Task. The setups for all submitted
runs are described as well as the achieved official evalu-
ation prediction accuracy in subsection 3.1 and 3.2. The
classification rate (%) obtained using a different hierarchy
level as that of the submitted runs and different param-
eters for the classifier are outlined in section 3.3. After
the test set ground truth was distributed, an ex-post
analysis was computed. This was done to detect the
contribution each feature has to the overall prediction
accuracy. The feature contribution is described in section
3.4. In section 3.5, other findings of this experimental
modelling approach are listed.

3.1 Runs

Eight runs belonging to the three submission categories:
Visual, Textual and Mixed were submitted for evaluation.
The submission category ‘Mixed’ represents a combina-
tion of visual and text features. Six of the submitted runs
belong to Mixed, one to Text and one to Visual. This de-
cision wasmade because not only better accuracies were
obtained during development, but also evaluation results
presented by other ImageCLEF participant groups in the

previous years have proven to be better when the ‘Mixed’
submission category is used [1], [33].

3.2 Evaluation results

In Figure 6, the prediction accuracies (%) achieved with
the eight runs described in section 3.1 are displayed.
Each bar represents the different feature combinations
as mentioned in Table 2. The blue parts show the official
prediction accuracies obtained at evaluation and the
purple parts display the difference to the prediction ac-
curacies obtained during the development stage.

Figure 6: Official evaluation prediction performance of the
submitted runs in blue bars and difference in performance at

development stage in purple bars

Run1 and Run4 are significantly (p<0.05) better than
other submitted runs but not among each other.
The Biomedical Computer Science Group (BCSG) outper-
formed all other participants in all submission categories
[34]. This is displayed in Figure 7. The coloured bars dis-
play the results of the submitted runs and the gray bars
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Figure 7: Official prediction performance. Colored bars represent the performance of BCSG and gray bars of other participants.

that of other participants [5], [6]. The BCSG was the only
participant to use both visual and text features.

3.3 Development results

Number of Random trees

Several numbers of trees were used to tune the Random
Forest classifier on the development set. Increasing the
number of trees showed to improve the accuracy:
[100 trees = 87.9%, 500 trees = 90.12% and 1000 trees
= 90.54%]. Adjusting the number of trees to more than
1000 trees lead to a slight increase in accuracy but in-
creased computational time.

Bag-Of-Words Dictionary Generation

The effect of the χ2-test in the text preprocessing stage
was evaluated. A dictionary for the BoW approach was
generated by deliberately omitting the application of the
χ2-test to calculate attribute importance. The prediction
accuracy obtained was approximately 4% less.

Flat Hierarchy Classification Scheme

The Random Forest and SVM classifiers were trained
using different hierarchy interpretations of the classifica-
tion scheme proposed in [2]. In Table 3, the results of
the deep hierarchy interpertation is listed. Thus, the first
level is “Modality Classification” containing two classes
“Diagnostic images” and “Generic biomedical illustra-
tions”. The final prediction accuracy obtained using this
method is listed in the row “Complete Classification” and
is 67.07 (%).
This observation was computed using DataSet4 and the
Bag-of-Keypoints and Color and EdgeDirectivity Descriptor

features. Table 3 shows the prediction accuracies (%)
obtained at the various hierarchy levels. Random Forest
was used as learning algorithm.

Table 3: Prediction accuracy (%) obtained using deep hierarchy
interpretation on the DataSet4 training set

3.4 Feature contribution

In an ex-post analysis, the contribution of all features was
evaluated. The contribution of a feature to prediction
performance is an important attribute that assists effi-
cient feature selection. To compute each feature contri-
bution, the difference between the accuracy when all
features are combined and the accuracy when a certain
feature is omitted was calculated. This step was com-
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Figure 8: Feature contribution of all extracted visual and text representation used for modality prediction

puted by applying the classifier model setup Run1 on the
original evaluation set.
The calculated feature contribution of all features is dis-
played in Figure 8. It can be seen that omitting most of
the extracted features led to a negative effect on predic-
tion performance. In contrary, the omission of the PHOG
feature has a positive effect on the prediction perform-
ance and hence increased the evaluation accuracy with
+0.27 (%).
As can be seen, the BoK, BoW and Basic Features con-
tributed the most to the overall prediction performance.
The extracted Gabor features were not added to the final
fused feature vector used for classification. This was done
as the principal components from the Gabor image re-
presentation did not improve prediction accuracy at de-
velopment stage.

3.5 Findings

Negative differences in prediction performance were ob-
served in the following:

• when the Bag-of-Keypoints visual representation was
computed using Lowe SIFT descriptors [35] instead of
dense SIFT descriptors

• when feature vectors were not normalised before
training the classifier

• when single precision format was used instead of
double precision format to define floating-points
numbers

Computing the PCA on the complete data collection as
described in section 2.4 proved to be a better approach.
The prediction accuracy increased [~4%] when the
unsupervised learning information was added. The pre-
diction accuracy for Run2 was 60.91 (%) with unsuper-
vised learning information and 56.63 (%) without.

4 Discussion
Various classification prediction approaches using mul-
tiple feature fusion and combinations of learning al-
gorithms were explored for predicting the modality of
biomedical literature images. There is a discrepancy
between prediction performance on the evaluation set
and on the sampled training and validation sets. This can
be seen in Figure 6 and is taken to be an overfitting
problem. The overfitting problem is assumed to be caused
by the process of finding the efficient number of principal
components. That is, the number of principal components
were chosen based on the positive effect on the results
recorded during development stage. This method was
not representative on the official test set. On the other
hand, supplementing visual image representation with
corresponding text representation proved to be a benefi-
cial strategy regarding classification accuracy. Omitting
any of the described features apart from the PHOG fea-
ture, resulted in a decrease on the official evaluation ac-
curacy.

4.1 Future work

Regarding the overfitting problem, a data augmentation
approach will be done to increase the training set to
tackle the problem of the unbalanced dataset. Convolu-
tional neural networks are currently a common approach
used for prediction tasks, hence an approach using this
method will be computed in order to compare accuracies
and detect limitations. The process of finding efficient
numbers of principal components should be computed
less dependently on the training set. This will lead to a
more reliable and independent classification approach.
In addition, more features for shape representation will
be extracted.
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5 Conclusion
In this work, the modelling approaches applied to predict
the modality of biomedical literature images are
presented. Several state-of-the-art features for visual and
text representation of all images were extracted. These
features were selected in order to distinguish between
30modalities. To reduce computational load, the principal
component analysis was applied. Two classifiers, Random
Forests with 100–500 deep trees and amulti class linear
kernel SVM with C=0.05, were used for training and pre-
diction. The proposed approach was applied on the Im-
ageCLEF 2015 Medical Classification Task and outper-
formed all other participants.
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